
 

1 November 2018 Motion Imagery Standards Board 1 

1 Scope 

This standard describes a method for formatting multi-dimensional arrays of data in KLV (Key 

Length Value). A multi-dimensional array is used to store and organize related data; typically, 

the array is processed as a unit of data (i.e. matrixes, etc.).  This standard provides a Pack 

construct to format multi-dimensional arrays, which minimizes the bytes needed to represent the 

data.  In addition, this standard includes options for specifying predefined methods of array 

element processing, such as using MISB ST 1201 (Floating Point to Integer Mapping) for 

compression. 

In application, the Multi-Dimensional Array Pack defined in this standard requires further 

context from an invoking document; that is, it is not used standalone. To provide consistency, 

this standard defines a syntax for invoking this standard within MISB documents.  

2 References 
 

[1]  SMPTE ST 336:2017 Data Encoding Protocol Using Key-Length-Value. 

[2]  MISB ST 1201.3 Floating Point to Integer Mapping, Oct 2017. 

[3]  MISB MISP-2019.1: Motion Imagery Handbook, Nov 2018. 

[4]  MISB ST 0807.22 MISB KLV Metadata Registry, Jun 2018. 

[5]  ISO/IEC 8825-1:2015 (ITU-T X.690) Information Technology – ASN.1 Encoding Rules: 

Specification of Basic Encoding Rules (BER), Canocical Encoding Rules (CER) and 

Distinguished Encoding Rules (DER). 

[6]  IEEE 754-2008 Standard for Floating-Point Arithmetic. 

 

3 Modifications and Changes 

Revision Date Summary of Changes 

ST 1303.1 11/01/2018  Modified Section 8.2 Example 3 invoking statement 
dimension lengths to match the number of dimensions 

 Deprecated Req -06 as it is a definition 

 Renamed Appendix A to be Deprecated Requirements & re-
ordered the appendices to their occurrence as referenced 

 

 
STANDARD 
 
Multi-Dimensional Array Pack 

 

MISB ST 1303.1 

 

1 November 2018 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 2 

 Updated References; deleted reference 0701; Added 
reference MISP Motion Imagery Handbook [3] 

 Editorial cleanup across the entire document: consistent 
usage of terms,  registry vs dictionary and grammatical usage 

4 Acronyms 

IMAPA Integer Mapping Starting Point A; defined in MISB ST 1201 

IMAPB Integer Mapping Starting Point B; defined in MISB ST 1201 

KLV Key Length Value 

MISB Motion Imagery Standards Board 

MISP Motion Imagery Standards Profile 

SMPTE Society of Motion Pictures & Television Engineers 

ST Standard 

5 Introduction 

Within software, data structures such as records and arrays provide information organization. 

When reformatting data structures into KLV record structures map readily into KLV constructs, 

such as KLV Set and Pack constructs.  However, the KLV standard [1] does not formally specify 

a means for reformatting arrays into KLV.  This standard defines an efficient and flexible 

method for formatting multi-dimensional arrays of fixed length into KLV. 

6 Array Composition 

An array of data is an organization of multiple fixed-sized elements (i.e. the data) along one or 

more dimensions.  In transferring an array of data, support information ensures the organization 

of the data is consistent between the sender and receiver.  A document which invokes this 

standard will define the array parameters to include: the number of dimensions, the number of 

elements per dimension, the size of an element, and the linkage of the elements to its defining 

KLV registry. 

The elements in an array can be of any type (e.g. integers, floating point values, strings, KLV 

pack or set values, etc.), however, all elements need to be the same number of bytes.  Elements 

of different sizes are normalized to the same length by either inflating or shrinking (see 

Appendix B).  When grouping data into an array there is an opportunity to use the information 

about the group to reduce the number of bytes needed for the array.  For example, if an array is 

composed of integers originally defined with four bytes each, yet all the values only need one 

byte then the array uses one-byte elements instead of four. 

In this document the following terminology is used: 

Array: Uppercase notation to indicate reference to an array as defined in this document. 

Element: Data representing a value identified by an index or indices. 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 3 

Requirement(s) 

ST 1303-01 All elements in an Array shall use the same number of bytes. 

ST 1303-02 The invoking standard shall specify the number of dimensions of the Array. 

ST 1303-03 The invoking standard shall specify the size of each dimension or how to compute 
the size of each dimension in the Array. 

ST 1303-04 The invoking standard shall specify the data contained in the Array using KLV Keys 
or KLV symbols. 

 

Figure 1 illustrates a single dimension Array, where its Elements are indexed beginning at 0 and 

ends at N-1 for N Element columns.  Elements in a one-dimensional array index only by 

columns, so column 0 is Element 0, column 1 is Element 1, etc. 

 

 

Figure 1: Illustration of a One-Dimensional Array of N Elements. 

Figure 2 shows a two-dimensional Array, where its Elements index by the row r and the column 

c.  Thus, the first Element is (0, 0) for r = 0, c = 0; the second Element in row 0 is (0, 1) for r = 0, 

c = 1; the second Element in row 1 is (1, 1) for r = 1 and c = 1, etc. (see Figure 2).  Rows are 

indexed 0 to M-1 and columns are indexed 0 to N-1. 

  

Figure 2: Illustration of a Two-Dimensional Array of M-Rows by N-Columns 

 

Element 
0

Element 
1

Element 
2

Element 
N-1

Element 
0,0

Element 
0,1

Element 
0,2

Element 
0,N-1

Element 
1,0

Element 
1,1

Element 
1,2

Element 
1,N-1

Element 
2,0

Element 
2,1

Element 
2,2

Element 
2,N-1

Element 
M-1,0

Element 
M-1,1

Element 
M-1,2

Element 
M-1,N-1

R
o

w
s

Columns



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 4 

Figure 3 depicts a three-dimensional Array, where its Elements are indexed by planes, rows and 

columns.  Each plane is shown as a separate colored two-dimensional array in Figure 3.  Again, 

the first Element in plane 0, row, 0 and column 0 is (0, 0 ,0) for (p, r, c) where p = r = c = 0. 

Planes are indexed 0 to P-1; rows are indexed 0 to M-1, and columns are indexed 0 to N-1. 

 

  

Figure 3: Illustration of a Three-Dimensional Array of P-Planes by M-Rows by N-Columns 

Array have two types of Elements: Registry and Processed.  Registry Elements match the type 

and bit structure as defined in their KLV registry.  Processed Elements are manipulated before 

they are inserted into the Array.  The manipulation is typically a method of compression; such an 

example is using MISB ST 1201 [2] (see Error! Reference source not found.) to compress 

floating point values before they are inserted into the Array.  Processed elements require 

additional support information to specify the processing method along with any parameters 

needed to do the processing.  Each processing method, called an EPA (Element Processing 

Algorithm), is assigned a value, which is documented in Table 3 of Appendix D. 

7 Multi-Dimensional Array Pack 

To provide the most bit-efficient method for transmitting the Array, plus its required support 

information, and its optional EPA information, a KLV Truncation Pack (described in the Motion 

Imagery Handbook [3] ) is used.  The parameters of the Multi-Dimensional Array Pack are in 

Table 1. 

Element
(0,0,0)

Element
(0,0,1)

Element
(0,0,N-1)

Element
(0,1,0)

Element
(0,1,1)

Element
(0,1,N-1)

Element
(0,M-1,0)

Element
(0,M-1,1)

Element
(0,N-1,N-1)

(0,0,N-1)(0,0,1)(0,0,0)

(1,0,N-1)(1,0,1)(1,0,0)

(P-1,0,N-1)(P-1,0,1)(P-1,0,0)

Element
(0,M-1,N-1)

(P
-1

,M
-1

,N
-1

)

(P
-1

,1
,N

-1
)

(P
-1

,0
,N

-1
)

(1
,0

,N
-1

)

(1
,1

,N
-1

)

(1
,M

-1
,N

-1
)R

o
w

s

Columns

Planes



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 5 

Table 1: Multi-Dimensional Array Pack  

Name 
Required/ 
Optional 

Type Min Value Description 

NDim Required 
BER-OID 

Subidentifier Integer 
1 Number of dimensions in the Array 

Dimi Required 
BER-OID 

Subidentifier Integer 
1 

Size of ith dimension - There are NDim 
number of these values. There is always at 
least one dimension, so this value will 
always be defined. 

EBytes Required BER-OID 
Subidentifier Integer 

1 Number of bytes for each element - the 
minimum value for this number is zero. 

EPA Required 
BER-OID 

Subidentifier Integer 
1 

Element Processing Algorithm. Indicator of 
Element Processing Algorithm to perform 
on each array element. 

EPAS Optional Defined by EPA N/A Element Processing Algorithm Support 

Array of 
Elements 

Optional 
Defined by Invoking 

Document 
N/A Array of data serialized into a one- 

dimensional array using row major ordering 

 

Requirement 

ST 1303-05 A Multi-Dimensional Array Pack shall have its mandatory parameters NDIM, Dimi, 
EBytes, EPA and its optional elements ordered as defined in MISB ST 1303 Table 1: 
Multi-Dimensional Array Pack. 

 

Figure 4 illustrates the Multi-Dimensional Array Pack, along with its Key and Length.  The 

parameters (blue) are the required information stated in Table 1; EPAS parameters (yellow) are 

optional; the Array of Elements (green) constitutes the Array data, which is also optional. 

 

 

Figure 4: Multi-Dimensional Pack Structure 

The following sections describe the KLV components of the Multi-Dimensional Array Pack. 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 6 

 Multi-Dimensional Array Pack – Key 

The Multi-Dimensional Array Pack 16-Byte UL1 “Key” is registered in MISB ST 0807[4] as: 

06.0E.2B.34.02.05.01.01.0E.01.03.03.06.00.00.00 (CRC 39697) 

 Multi-Dimensional Array Pack – Length 

The Length of the Multi-Dimensional Array Pack is BER-length encoded as specified in  [1]. 

The length includes the number of bytes for NDim, all the dimensions (Dim1…DimN), the number 

of bytes for each element EBytes, the EPA, the EPAS, and the Array of Elements.  Compute 

PackLength as follows: 

PackLength = L(NDim) + L(Dim1) +…+ L(DimN) + L(EBytes) + L(EPA) + L(EPAS) + L(Array of 

Elements) 

Where L(x) is the length of value x in bytes. 

As discussed below, the L(EPAS) and L(Array) can both be zero depending on usage and 

circumstances.  See Appendix D on interpreting the EPAS if included. 

 Multi-Dimensional Array Pack – Value 

The Value of the Multi-Dimensional Array Pack consists of a collection of required and optional 

parameters as listed in the following sections.  All parameters are required unless noted. 

7.3.1 Parameter - NDim 

The NDim parameter is the count of dimensions in the Array of Elements.  For example, a simple 

list of Elements is a one-dimensional Array; therefore, NDim equals 1.  A rectangle of Elements is 

a two-dimensional Array; therefore, NDim equals 2.  A cube of elements is a three-dimensional 

Array; therefore, NDim equals 3, etc.  A value of zero for NDim is not allowed. 

 

Requirement(s) 

ST 1303-07 The invoking document shall specify a value for NDim that is greater than or equal to 
one (1).  

ST 1303-08 The encoding of NDim shall be BER-OID [5]. 

Because NDim is BER-OID  [5] encoded the number of bytes is based on the value of the 

parameter.  For example, for a parameter value less than 127 dimensions one byte is used and 

L(NDim) = 1.  The value of the NDim parameter specifies the number N of dimensional parameters 

(Dim1…DimN) following the NDim parameter.  For example, if NDim = 3 (a cube of Elements) 

then Dim1, Dim2 and Dim3 parameters will follow the NDim parameter. 

                                                 

1 Note: this UL is only used within an invoking document and not standalone 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 7 

7.3.2 Parameter – Dimi 

The Dimi parameter specifies the number of elements in the ith dimension, which is greater than 

or equal to one (i.e. zero is not allowed).  For example, for a three-dimensional cube Array of 

100x200x300 Elements (i.e. NDim = 3) Dim1 = 100, Dim2 = 200 and Dim3 = 300. 

 

Requirement(s) 

ST 1303-09 The value of Dimi shall be greater than or equal to one (1). 

ST 1303-10 The encoding of each Dimi shall be BER-OID  [5]. 

 

Because each of these parameters is BER-OID encoded the number of bytes used for each 

parameter is based on its value.  In the example above L(Dim1) = 1 byte (since 110 <127), 

L(Dim2) = 2 bytes (since 200 > 127), and L(Dim3) = 2 bytes (since 300 > 127). 

7.3.3 Parameter – EBytes 

The EBytes parameter specifies the number of bytes representing each Element within the Array. 

For example, if the Array consists of single-precision, floating-point numbers, then EBytes = 4 

bytes. Zero is a valid value for EBytes. EBytes equal to zero (0) indicates each Element in the Array 

is of zero length, and therefore, the Array of Elements parameter contains no data.  A zero valued 

EBytes signals information without passing any data; for example, indicating there was no change 

in the last set of measurements. 

 

Requirement(s) 

ST 1303-11 The encoding of EBytes shall be BER-OID  [5]. 

ST 1303-12 The value of EBytes shall be greater than or equal to zero (0). 

ST 1303-13 EBytes equal to zero (0) shall signal that the Array of Elements is not included in the 
Multi-Dimensional Array Pack.  

 

Because EBytes is BER-OID encoded the number of bytes is based on the value of the parameter. 

For example, if EBytes = 4 bytes then only one byte is used i.e. L(EBytes) = L(4) = 1.  Strings 

longer than 127 bytes will use more than one byte i.e. L(130)=2; however, all standard numerical 

values (i.e. Integers,  Unsigned Integer, Floats) will usually be in the range of 1 to 8 bytes.  The 

computation of the Array Length uses the EBytes value along with the values of each Dimi. 

7.3.4 Parameter – EPA (Element Processing Algorithm) 

The EPA (Element Processing Algorithm) parameter specifies the method of processing when 

forming the Array of Elements, and the method for interpreting the Element values when parsing 

data from the Array.  An EPA of one (0x01) indicates no processing, and the Elements match the 

definitions as specified in their KLV registry; all other EPA values indicate Elements have been 

processed.  Appendix D lists the different Element Processing Algorithms and their parameters. 

 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 8 

Requirement 

ST 1303-14 An EPA (Element Processing Algorithm) parameter value shall be assigned a value 
only from MISB ST 1303 Table 3: Element Processing Algorithms. 

7.3.5 Parameters – EPAS (Element Processing Algorithm Support) (Optional) 

The optional EPAS (Element Processing Algorithm Support) parameters specify values for an 

Element Processing Algorithm if needed.  Each EPA in Appendix D lists its support values.  If 

the EPA value is set to one (0x01) then there is no corresponding EPAS parameter. EPAS 

parameters come before the Array so parsers can use the information to interpret the data on 

input. 

7.3.6 Parameter – Array of Elements (Optional) 

The optional Array of Elements parameter is the multi-dimensional data being described by all 

required and optional parameters.  The Array is a serialized block of data that contains 

Dim1*Dim2*…*DimN Elements, with each Element exactly EBytes bytes.  If EBytes is zero the 

Array is considered empty (e.g. all zeros), and it is truncated from the Multi-Dimensional Array 

Pack. 

The total length of the Array of Elements in bytes is: Dim1 * Dim2 *… * DimN * EBytes. 

To enable accessing the elements within the block of data, the Array is serialized in row major 

order. 

Requirement 

ST 1303-15 The data in the Array of Elements shall be organized in row major order. 

Because the block of data is organized in row major order, any Element in the Array can be 

accessed by computing an offset from the start of the Array (see Appendix B for computation). 

As is done in many software languages (such as C, C++ or Java) elements in an array are 

indexed using zero-based notations, so the first element of each dimension is indexed as the 

zeroth element.  For example, Array(10,0) is the first column Element of the 11th row for Array(r, 

c) where r = 10 and c= 0. 

8 MISP and MISB Document Standard Notation 

When using or “invoking” the Multi-Dimensional Array Pack it is important to be clear as to the 

type, size and optional packing used.  The following notation will ensure consistency and 

completeness of the Array definition: 

MDARRAY(<Data Identifier>,<NDims>, <Dim1>,…,<DimN>, [EBytes]) 

Where: 

 Parameters in <..> are required. 

 Parameters in [..] are optional.  

 <Data Identifier> is the KLV Registry identifier(s) to use for the Elements (see 

 Section 8.1). 

 Other parameters are defined in Section 7. 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 9 

There are cases when some of the values in the notation will be unknown as an invoking MISB 

document is written (i.e. values computed at runtime); those values are to be labeled with a 

footnote (i.e. “Notex”) which references text providing further explanation.  Footnotes can be 

used for multiple parameters and multiple uses of the MDARRAY definition - See Examples in 

Section 8.2.  EBytes can be determined at runtime based on the data values in the Array; however, 

an invoking standard may specify a predetermined size. Although EBytes is a mandatory parameter 

in the Multi-Dimensional Array Pack, the Standard Notation lists it as “optional” because the 

Ebytes value may be determined at run time or from a known fixed length type (e.g. the registry 

lists the value as a 32-bit IEEE floating point number).  

 

Requirement 

ST 1303-16 When using MISB ST 1303, the invoking standard shall use the MDARRAY(…) 
notation to ensure consistency and completeness of the Multi-Dimensional Array 
Pack definition in accordance with MISB ST 1303. 

 Data Identifier 

The Data Identifier links the Array of Elements to a specific KLV registry item.  The KLV 

registry defines the details of the Element, such as the type, name, description, etc.  The Data 

Identifier can be either the Key or the Symbol Name.  The Key is the 16-byte Universal Label 

associated with any KLV data item.  The Symbol Name is the unique text identifier assigned to a 

KLV data item. 

Data Identifiers can be associated to the whole Array (homogeneous), or to parts of the Array 

(heterogeneous) if the elements all share the same length in bytes.  A heterogeneous example is a 

grid of points with values representing latitude, longitude and height above ellipsoid (HAE); a 

three-dimensional Array of points with a first plane used for latitude values, a second plane used 

for longitude values and a third plane for HAE values as illustrated in Figure 5.  This example 

assumes the latitude, longitude and HAE values use the same number of bytes, e.g. all single-

precision, floating-point values. 

 

Figure 5: Illustration of 3-D Array with Different Plane Types 

Latitude

Longitude

Height Above Ellipsoid



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 10 

When the Array is heterogeneous additional footnotes describe the meaning and usage of the 

dimensions.  The footnotes describe how the different dimensions link to the KLV registry.  For 

example, in Figure 5, Array(0, all rows, all columns) links to the Latitude KLV item; Array(1, all 

rows, all columns) links to the Longitude KLV item, and Array(2, all rows, all columns) links to 

the HAE KLV item. 

When the Array is heterogeneous and an EPA other than direct mapping is used, the Element 

values need to be compatible with the EPA Care must be taken in choosing the EPAS parameters 

because the data may have different value ranges.  Example 1 and 2 below pertain to 

homogeneous Data Identifiers Arrays, while Examples 3, 4, and 5 show three different 

approaches to defining a heterogeneous Array. 

 Examples 

 

Example 1:  An Array of homogeneous Range Depth data. 

 MDARRAY(06.0E.2B.34.01.01.01.01.0E.01.01.03.25.00.00.00, 2, 100, 100) 

 or, 

 MDARRAY(range_depth, 2, 100, 100) 

This is a two-dimensional Array of 100x100 Elements of Range Depth (UL specified) data. 

 

Example 2:  An Array of homogeneous Range Depth data with footnotes describing the “run-

time” values. 

 MDARRAY(06.0E.2B.34.01.01.01.01.0E.01.01.03.25.00.00.00, 2, NoteA, NoteA) 

 NoteA: This value is dependent on the dimensions of the sensor. 

 Implementations should use EPA 2, where Min and Max are the bounds of the Array data 

and the Element size (EBytes) is determined by IMAPA(Min, Max, 1.0e-4). 

This is a two-dimensional Array of Range Depth data from a sensor (dimensions known only at 

runtime - NoteA).  The invoker recommends the use of an EPA transformation based on the 

expected values in the Array.  In this example, the recommendation is to use EPA two (2), so 

each Element’s value maps to an integer with IMAPB by using the min/max of the source array 

data and EBytes.  The recommended Element Size (EBytes) is computed based on the IMAPA 

computation for length using a precision value of 1.0e-4. 

 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 11 

Example 3:  An Array of heterogeneous Latitude/Longitude/Altitude data with footnotes 

describing the dimensional use and “run-time” values. 

 MDARRAY(NoteA, 3, 3, NoteB, NoteB) 

 NoteA: Array(0, r, c) = 06.0E.2B.34.01.01.01.01.07.01.02.01.02.04.00.00a, 

  Array(1, r, c) = 06.0E.2B.34.01.01.01.01.07.01.02.01.02.06.00.00a, 

  Array(2, r, c) = 06.0E.2B.34.01.01.01.01.07.01.02.01.02.02.00.00a, 

  r = all rows and c = all columns.  

 NoteB: This value is dependent on the dimensions of the sensor. 

 a
 KLV Universal Label (Key), taken from the SMPTE dictionary, illustrate the use of 4-byte floats; other KLV Keys in the DoD 

dictionary (MISB ST 0807) should be used for normal MISB applications. 

This is a three-dimensional Array of Latitude, Longitude and Altitude data from a sensor 

(dimensions known only at runtime - NoteB).  The first plane (plane 0) is the Latitude, the second 

plane (plane 1) is the Longitude and the third plane (plane 2) is the Altitude. 

This usage is not recommended when applying EPA 2 (ST 1201 Floating Point to Integer 

Mapping) to reduce the Element size (EBytes) because it is impeded by the need to represent 

values with ranges orders of magnitude apart using a single mapping (latitudes of +/-90° versus 

HAE of -900 to 19000 meters). 

 

Example 4:  The same data of Example 3 but defined as three separate homogeneous Arrays. 

 MDARRAY(06.0E.2B.34.01.01.01.01.07.01.02.01.02.04.00.00a, 2, NoteA, NoteA) 

 MDARRAY(06.0E.2B.34.01.01.01.01.07.01.02.01.02.06.00.00a, 2, NoteA, NoteA) 

 MDARRAY(06.0E.2B.34.01.01.01.01.07.01.02.01.02.02.00.00a, 2, NoteA, NoteA) 

NoteA: This value is dependent on the size of the sensor. 
 a

KLVUniversal Label (Key), taken from the SMPTE dictionary, illustrate the use of 4 byte floats; other KLV Keys in the DoD 

dictionary (MISB ST 0807) should be used for normal MISB applications. 

These are three separate Arrays: the first Array contains Latitude values; the second Array 

contains Longitude values; the third Array contains Altitude values.  The dimension of each 

Array is defined at runtime from a sensor’s information (dimensions known only at runtime - 

NoteA). 

This usage is preferable when applying EPA 2 (MISB ST 1201 Floating Point to Integer 

Mapping) to reduce the Element size (EBytes) as each Array of Elements transforms individually. 

 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 12 

Example 5:  An ARRAY using the Location Truncation Pack. 

 MDARRAY(location_pack, 2, rows, cols)  

This is a two-dimensional Array of location_pack values, with each value potentially defining 

sub-components: latitude, longitude, height, sigma latitude, sigma longitude, sigma height,  Rho 

lat/lon, Rho lat/height and Rho lon/height.  The Element size (EBytes) determines which data is 

included in each Elements pack - the Elements must be consistently defined to maintain the 

required fixed Element size.  

This usage rigidly defines the ranges of each sub-component based on the pack definition, so the 

advantage of adjusting the Element size (EBytes) based on the range of data within the Array 

cannot be used. 

Appendix A Deprecated Requirements 

Requirement 

ST 1303-06 
(Deprecated) 

The 16-byte Key for the Multidimensional Array Truncation Pack shall be 
06.0E.2B.34.02.05.01.01.0E.01.03.03.06.00.00.00 (CRC 39697). 

Appendix B Row Major Computation 

The following equations demonstrate how to compute the offsets into an Array based on the 

Array dimensions, D1, D2…DN and the desired Element indexes x1, x2…xn.  Each Element index 

(x1, x2…xn) is zero based, so the range of xi is zero to Di-1, i.e. xi = [0, Di-1].  The Element size 

(EBytes) of each Element in the Array is denoted as ES. 

1-Dimensional Array 

Offset(column) =  Offset(𝑥1) = 𝑥1𝐸𝑠 

2-Dimensional Array 

Offset(row, column) =  Offset(𝑥1, 𝑥2) = (𝑥1𝐷2 + 𝑥2)𝐸𝑠 

3-Dimensional Array 

Offset(plane, row, column) =  Offset(𝑥1, 𝑥2, 𝑥3) = (x1𝐷2𝐷3 + 𝑥2𝐷3 + 𝑥3)𝐸𝑠 

N-Dimensional Array 

Offset(𝑥1, … , plane, row, column) =  Offset(𝑥1, 𝑥2, … , 𝑥𝑁)  = (∑ 𝑥𝑖 ( ∏ 𝐷𝑗

𝑁

𝑗=𝑖+1

)

𝑁

𝑖=1

) 𝐸𝑠 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 13 

Appendix C Normalizing Element Lengths 

The Multi-Dimensional Array Pack requires all Elements within the Array to be the same length. 

This can be accomplished by either reducing or inflating selected Elements to the desired length.  

Reducing data length is possible depending on the application and can be performed if data 

integrity is not lost during the processes.  For example, if the data Elements are null-padded 

strings then reduce the length by removing trailing null characters, if they do not provide any 

meaning. 

Elements inflated or upsized to match the lengths of larger Elements must follow a consistent 

method of inflating.  Each type of data will require a different method as indicated in Table 2. 

Table 2: Data Inflation Methods 

Type Inflation Method 

Signed Integer Add sign extended bytes by adding additional most significant bytes.  If the most 
significant bit of the original value is zero (0), then additional bytes will have all 
bits zero (0x00).  If the most significant bit of the original value is one (1), then 
additional bytes will have all bits set (0xFF). 

Unsigned Integer Add additional most significant bytes with zero filled bytes (0x00)  

32-bit Float Type Cast 32-bit floating point value into a 64-bit floating point value 

Strings Pad the end of the string with null (0x00) characters 

 

To deflate the data back to the original size, if known, the Data Inflation method is performed in 

reverse. 

Appendix D EPA (Element Processing Algorithm)  

An Element Processing Algorithm enables packing or other processing on Array Elements. Table 

3 lists the available Element Processing Algorithms. 

Table 3: Element Processing Algorithms 

EPA Value Algorithm 
Number of 
Parameters 

0x00 Unused 0 

0x01 Direct mapping to KLV dictionary - No Element Processing 0 

0x02 MISB ST 1201 Floating Point to Integer Mapping - See Error! 

Reference source not found. 

2 

 

Appendix D.1 MISB ST 1201 Element Processing  

When floating point Elements are formatted into KLV there is the option of using MISB ST 

1201 [2] to map floating point values to integers to reduce the number of bytes per Element. 



MISB ST 1303.1 Multi-Dimensional Array Pack 

 

1 November 2018 Motion Imagery Standards Board 14 

There are two methods specified in MISB ST 1201 for mapping the values: IMAPA and IMAPB. 

IMAPA uses a minimum, maximum and a precision value to compute the length of a mapped 

integer value; IMAPB uses a minimum, maximum and a pre-computed length.  Table 4 describes 

the minimum and maximum values per MISB ST 1201. 

Table 4: MISB ST 1201 Minimum/Maximum Values 

 

Requirement 

ST 1303-17 When using EPA 0x02, the EPAS value shall contain the Minimum and Maximum 
values as defined in MISB ST 1303 Table 4: MISB ST 1201 Minimum/Maximum 
Values. 

 

The value of EBytes along with the Minimum and Maximum values form the IMAPB mapping 

parameters for each value in the Array: IMAPB(Minimum, Maximum, EBytes).  Because the 

length of an Element is already specified in the Array support information, this standard uses the 

IMAPB method of MISB ST 1201. 

 

Requirement(s) 

ST 1303-18 If EPA is 0x02, then the Array Elements shall be encoded as IMAPB(Minimum, 
Maximum, EBytes). 

ST 1303-19 The IMAPB Minimum and Maximum parameters shall both be the same size: either 
both 32-bit or both 64-bit IEEE  [6] floating point numbers.  

The combined length of the Minimum and Maximum parameters is computed from the total 

length of the Pack minus the length of the other parameters (NDim, Dim1, …, DimN, EBytes EPA 

and Array of Elements), as shown below.  

MinMax Length = Pack Length - (L(NDim) + L(Dim1) + … + L(DimN) + L(EBytes) + L(EPA) + 

L(Array of Elements)) 

Where:   

 MinMax Length = L(Minimum) + L(Maximum) 

 L(x) is the length of value x in bytes. 

MinMax Length will be either 8 bytes or 16 bytes.  When the MinMax length is 8 bytes then the 

Minimum and Maximum values are single precision, so the first four bytes are the Minimum 

parameter and the last four bytes are the Maximum parameter.  When the MinMax length is 16 

bytes the Minimum and Maximum values are double precision, so the first 8 bytes are the 

Minimum parameter and the last 8 bytes are the Maximum parameter. 

Name  Description 

ST 1201  
Minimum Value 

The Minimum Value used for mapping and reverse mapping any value in the 
Array to its corresponding packed value - see MISB ST 1201 for further details. 

ST 1201  
Maximum Value 

The Maximum Value used for mapping and reverse mapping any value in the 
Array to its corresponding packed value - see MISB ST 1201 for further details.  


